- 1 Given that the product of two whole numbers $m \times n$ is a prime number, and the value of m is smaller than n, find the value of m.
- 2 Given that $(2009 \times n 2009) \div (2008 \times 2009 2006 \times 2007) = 0$, find the value of n.
- 3 Find the missing number x in the following number sequence.
 - 2, 9, -18, -11, x, 29, -58, -51,...
- 4 Jane has 9 boxes with 9 accompanying keys. Each box can only be opened by its accompanying key. If the 9 keys have been mixed up, find the maximum number of attempts Jane must make before she can open all the boxes
- The diagram shows a triangle ABC with AC = 18 cm and BC = 24 cm. D lies on BC such that AD is perpendicular to BC. E lies on AC such that BE is perpendicular to AC. Given that BE = 20 cm and AD = x cm, find the value of x.

- A language school has 100 pupils in which 69% of the pupils study French, 79% study German, 89% study Japanese and 99% study English. Given that at least x % of the students study all four languages, find the value of x.
- 7 Find the value of x.

8 9	3 5	9	1
3 5	x	7	1
9 7		5	1
1	1	1	3

- 8 Given that $9 = n_1 + n_2 + n_3 + n_4 + n_5 + n_6 + n_7 + n_8 + n_9$ where $n_1, n_2, n_3, n_4, n_5, n_6, n_7, n_8$ and n_9 are consecutive numbers, find the value of the product $n_1 \times n_2 \times n_3 \times n_4 \times n_5 \times n_6 \times n_7 \times n_8 \times n_9$.
- The diagram shows a regular 6-sided figure **ABCDEF**. G, H, I, J, K and L are mid-points of AB, BC, CD, DE, EF and FA respectively. Given that the area of **ABCDEF** is 100 cm² and the area of **GHIJKL** is $x \, \text{cm}^2$, find the value of x.

10 Three pupils A, B and C are asked to write down the height of a child, the circumference of a circle, the volume of a cup and the weight of a ball. Their responses are tabulated below:

Pupil	Height of the child (cm)	Circumference of the circle (cm)	Volume of the cup (cm³)	Weight of the ball (g)
A	90	22	250	510
В	70	21	245	510
C	80	22	250	520

If each pupil has only two correct responses, and the height of the child is x cm, find the value of x.

11 The diagram shows a square grid comprising 25 dots. A circle is attached to the grid. Find the largest possible number of dots the circle can pass through.

Jane and Peter competed in a 100 m race. When Peter crossed the finishing line, Jane just crossed the 90 m mark. If Peter were to start 10 m behind the starting line, the distance between them when one of them crosses the finishing line is x m. Find the value of x.

13 Given that $(1+2+3+4+5+4+3+2+1)\times(123454321)=x^2$, find the value of x.

14 A $5 \times 5 \times 5$ cube is to be assembled using only $1 \times 1 \times 1$ cuboid(s) and $1 \times 1 \times 2$ cuboid(s). Find the maximum number of $1 \times 1 \times 2$ cuboid(s) required to build this $5 \times 5 \times 5$ cube.

15 Given that $(n_1)^2 + (2n_2)^2 + (3n_3)^2 + (4n_4)^2 + (5n_5)^2 + (6n_6)^2 + (7n_7)^2 + (8n_8)^2 + (9n_9)^2 = 285$, find the value of $n_1 + n_2 + n_3 + n_4 + n_5 + n_6 + n_7 + n_8 + n_9$ if n_1 , n_2 , n_3 , n_4 , n_5 , n_6 , n_7 , n_8 and n_9 are non-zero whole numbers.

16 A circle and a square have the same perimeter. Which of the following statement is true?

- (1) Their areas are the same.
- (2) The area of the circle is four times the area of the square.
- (3) The area of the circle is greater than that of the square.
- (4) The area of the circle is smaller than that of the square.
- (5) None of the above.

As shown in the diagram, the points L and M lie on PQ and QR respectively. O is the point of intersection of the lines LR and PM. Given that MP = MQ, LQ = LR, PL = PO and $\angle POR = x^{\circ}$, find the value of x.

- 18 Given that the value of the sum $\frac{1}{a} + \frac{1}{b} + \frac{1}{c}$ lies between $\frac{28}{29}$ and 1, find the smallest possible value of a + b + c where a, b and c are whole numbers.
- Jane has nine 1 cm long sticks, six 2 cm long sticks and three 4 cm long sticks. Given that Jane has to use all the sticks to make a single rectangle, how many rectangles with different dimensions can she make?
 - (1) Three
- **(2)** Two
- (3) One
- **(4)** Zero
- **(5)** None of the above.
- 20 Peter wants to cut a 63 cm long string into smaller segments so that one or more of the segments add up to whole numbers in centimetres from 1 to 63. Find the least number of cuts he must make.
- 21 The diagram shows a 5 by 5 square comprising twenty five unit squares. Find the **least number** of unit squares to be shaded so that any 3 by 3 square has **exactly four** unit squares shaded.

- Peter and Jane were each given a candle. Jane's candle was 3 cm shorter than Peter's and each candle burned at a different rate. Peter and Jane lit their candles at 7 pm and 9 pm respectively. Both candles burned down to the same height at 10 pm. Jane's candle burned out after another 4 hours and Peter's candle burned out after another 6 hours. Given that the height of Peter's candle at the beginning was x cm, find the value of x.
- Three straight lines can form a maximum of one triangle.

 Four straight lines can form a maximum of two non-overly

Four straight lines can form a maximum of two non-overlapping triangles as shown below.

Five straight lines can form a maximum of five non-overlapping triangles.

Six straight lines can form a maximum of x non-overlapping triangles.

Find the value of x.

- Given that $N = \underbrace{2 \times 2 \times 2 \times ... \times 2}_{2009} \times \underbrace{5 \times 5 \times 5 \times ... \times 5}_{2000}$, find the number of digits in N.
- Jane and Peter are queueing up in a single line to buy food at the canteen. There are x persons behind Jane and there are y persons in front of Peter. Jane is z persons in front of Peter. The number of people in the queue is _____ persons.
 - (1) -x + y + z 1

- (2) x + y z + 1
- (3) -x + y + z

(4) -x + y + z + 2

(5) x + y - x

There are 4 ways to select 26

Find the number of ways to select

27 The diagram shows a trapezium ABCD. The length of AB is $2\frac{1}{2}$ times that of CD and the areas of triangles OAB and OCD are 20 cm² and 14 cm² respectively.

Given that the area of the trapezium is $x \text{ cm}^2$, find the value of x.

Given that $\frac{1}{10 + \frac{1}{9 + \frac{1}{9}}} + \frac{1}{a + \frac{1}{b + \frac{1}{b + \frac{1}{b}}}} = 1 \text{ where } a \text{ and } b \text{ are whole numbers, find the value of } a + b.$

$$\frac{1}{10 + \frac{1}{9 + \frac{1}{9}}} + \frac{1}{a + \frac{1}{b + \frac{1}{b}}}$$

A shop sells dark and white chocolates in three different types of packaging as shown in the table.

	Number of Dark Chocolate	Number of White Chocolate
Package A	9	3
Package B	9	6
Package C	6	0

Mr Tan bought a total of 36 packages which consisted of 288 pieces of dark chocolates and 105 pieces of white chocolates. How many packages of type A did he buy?

There are buses travelling to and fro between Station A and Station B. The buses leave the stations at regular interval and a bus will meet another bus coming in the opposite direction every 6 minutes.

Peter starts cycling from A towards B at the same time Jane starts cycling from B towards A.

Peter and Jane will meet a bus coming in the opposite direction every 7 and 8 minutes respectively.

After 56 minutes of cycling on the road, they meet each other.

Find the time taken by a bus to travel from A to B.

Singapore Mathematical Olympiad for Primary Schools 2009 First Round – Answers Keys				
	Questions 1 to 10 Each carries 4 marks	16	3	
1	1	17	108	
2	1	18	12	
3	22	19	4	
4	45	20	5	
5	15			
6	36	E	Questions 21 to 30 ach carries 6 marks	
7	19	21	7	
8	0	22	18	
9	75	23	7	
10	80	24	2003	
	,	25	2	
		26	30	
		27	77	
	Questions 11 to 20 Each carries 5 marks	28	10	
11	8	29	13	
12	1	30	68	
13	55555			
14	62			
15	9			